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Lossy compression

Lossless compression program: e.g. winzip, gzip, winrar, etc.
Some signals are too costly to compress losslessly:

I Audio: e.g. MP3
I Images: e.g. JPEG, SPIHT and JPEG 2000
I Video: e.g. MPEG2 (DVD), MPEG4 and h.264

Original image (929kB)
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Information theoretic lossy source coding

Shannon’s lossy source coding problem (1948): the best we can do?
Compress an i.i.d. source X with (long) block codes
Distortion: measure the quality of the reconstruction

Rate-distortion function R(D) = minEd(X ,Y )≤D I(X ;Y ).
Intuition on how to design optimal codes
Benefit of knowing the best performance to expect
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Lossy source coding with multiple users

How about for more than point-to-point case?
Point-to-point case: rate and distortion
General case: rate tuple and distortion tuple

I Source coding: rate-distortion region
I Joint source-channel coding: achievable-distortion region

Characterizing these regions is very difficult
Only known for a few special cases

I Wyner-Ziv coding, successive refinement and two-way
communication

Difficult even with restricted scope: e.g. Gaussian source only
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Approximate solutions

Can we find the solution approximately instead?
Yes, “it’s easier to approximate"
Particularly suitable for Gaussian problems

Good approximation is almost as useful as exact solution
Intuition on how to design close-to-optimal codes.
Benefit of knowing the optimal performance within some precision.

Bonus: may lead to precise solution in some special cases.
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What’s in this talk?

A series of approximation results we recently presented
Multiple descriptions

I T., Mohajer, Diggavi, IT-09.
I Mohajer, T., Diggavi, IT-10.

Sending Gaussian source on broadcast channel
I T., Diggavi, Shamai, IT-11.

On the optimality of source-channel separation in networks
I T., Chen, Diggavi, Shamai, Arxiv.

This talk:
Summarize these results and discuss some related ones
Connects some dots, and present several “new” results
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Gaussian multiple descriptions: symmetric distortions
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Lossy problem vs. lossless problem

“Approximating the Gaussian multiple description rate region under symmetric distortion constraints," IT-09
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Gaussian multiple descriptions: symmetric distortionsSuccessive Refinement Encoder MultilevelDiversityCodingEncoderLayer 1Layer 2Layer 3
X

Description 1Description 2Description 3
Successive refinement: later pieces help refine earlier ones

What’s the secret for MLD coding?
Unequal loss protection

1V
2V

3V
(3,3) no coding

(3,2) MDS code

(3,1) repetition code

Description 1 Description 2 Description 3
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Rate region approximation

≤0.7071≤1.2247≤1.2990
1R

2R

3R

31 RR +

3212 RRR ++

321 RRR ++

Inner bound: multilevel diversity coding + successive refinement
Gap can be reduced by using better coding scheme
Generalized to more than three descriptions and other sources
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Multiple descriptions: asymm. distortions
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Lossless problem: asymmetric multilevel diversity coding

“Asymmetric multilevel diversity coding and asymmetric multiple descriptions," IT-10
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Rate region: asymm. multiple descriptions

≤0.7071≤1.2247≤1.2990
1R

2R

3R

31 RR +

3212 RRR ++

321 RRR ++

Asymm. multilevel diversity coding + successive refinement
Note: asymm. MLD rate region is still open for > 3.
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Gaussian source on Gaussian BC-channel
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Inner bound: separation-based scheme
I Channel coding: degraded broadcast channel code
I Source coding: successive refinement

“Approximate characterizations for the Gaussian source broadcast distortion region," IT-11.
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Gaussian source on Gaussian BC-channel
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If the optimal scheme can achieve (D1,D2, ...,DK ):
I The separation scheme can achieve at least (KD1,KD2, ...,KDK ).
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Gaussian source on General BC-channel
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Inner bound: separation-based scheme
I Channel coding: broadcast with degraded message sets

Same multiplicative gaps between inner and outer bounds

“Approximate characterizations for the Gaussian source broadcast distortion region," IT-11.
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A network setting

Communication

Network

1
S

2
S

4,1
Ŝ

2,1
Ŝ

3,1
Ŝ

4,2
Ŝ

1,2
Ŝ

Mutually independent sources and general multiuser channels
A single source can be present at multiple nodes
Each source is wanted at multiple sinks
Restrictions on the distortion measure

I Difference distortion measure for each single source: f (s − ŝ)

“Optimality and approximate optimality of source-channel separation in networks," Arxiv.
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Approximate separation in network setting

Source-channel separation is approximately optimal:
Genie-provided links between source and destinations in a
separation scheme:

I As good as the optimal joint coding scheme

The capacities of these genie links need not be too large
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A hidden theme: Gaussian source broadcast

EncoderS

Receiver K
Receiver kReceiver 1
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Gaussian sources on general broadcast channel: a general setting
No restriction on the broadcast channels.
Broadcast “channel” capacity may be unknown.
Result: source-channel separation is approximately optimal.
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Gaussian MD and Gaussian source broadcast
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Multiple descriptions: a deterministic broadcast channel
Broadcast capacity = MLD rate region
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Gaussian source broadcast and network broadcast

CommunicationNetwork1S
4,1Ŝ

2,1Ŝ

3,1Ŝ

EncoderS
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Receiver kReceiver 1
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Network broadcast: an abstract broadcast channel
I May have feedback and other multiuser channels in the network

Interferences by multiple sources? Part of the channel code.
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How did we get this general result?

EncoderS

Receiver K
Receiver kReceiver 1

M
M
M

M

KŜ

kŜ
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If certain distortions D1,D2, ...,DK is achievable
I Fixing the enc/dec functions: induce a super channel

Sm → (Ŝm
1 , Ŝ

m
2 , ..., Ŝ

m
K )

I This channel has some quality guarantees
I Send the source S on this super-channel
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More on the channel quality guarantee

Lemma (Channel qualities from distortions)

W: a random variable s.t. Ed(Sm,g(W )) ≤ D.
U = S + V and U ′ = S + V + V ′: V and V ′ indep. Gaussian
random variables, with variance τ and τ ′ − τ .

1 Mutual information bound

I(W ;U ′m) ≥ m
2

log
1 + τ ′

D + τ ′
,

2 Bound on mutual information difference

I(W ;Um)− I(W ;U ′m) ≥ m
2

log
(1 + τ)(D + τ ′)

(1 + τ ′)(D + τ)
.

Note: U and U ′ are r.v. additionally introduced.
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More on the channel quality guarantee

EncoderS

Receiver K
Receiver kReceiver 1
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On super-BC Sm → (Ŝm
1 , Ŝ

m
2 , ..., Ŝ

m
K ): each Ŝm

k is W .
User-k in the super broadcast channel has rate

1
2

log
(1 + τk )

∏k
j=2(Dj + τj−1)∏k

j=1(Dj + τj)

Using Gaussian R-D function D = exp(−2R)
I Separation scheme achieves some distortions (w/ parameters {τj})
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First new case: revisiting asymm. Gaussian MD

Asymm. MLD lossless problem difficult for K > 3
Open: the asymm. MD approxmation problem for K > 3?

Question: is AMLD+successive refinement still approximately optimal?
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First new case: revisiting asymm. Gaussian MD

Answer: yes! asymm. MLD is a deterministic broadcast channel

If AMLD is solved (K = 3): approximate characterization
If AMLD is open (K > 3): approximate optimality
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Second new case: a less obvious problem

Broadcast correlated Gaussian sources on Gaussian channel
Each user is interested in one source component
Source bandwidth and channel bandwidth can be mismatched
For bandwidth matched case, hybrid scheme is optimal (T.,
Diggavi, Shamai IT-11)

encoder

mm SS 21 , nX
+

+

decoder

decoder

mS1
ˆ

mS2
ˆ

nZ2

nZ1

Two sources are now dependent: can we still apply the result?
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Second new case: a less obvious problem

An almost equivalent problem:
Each user is interested in all components
Replace the MSE distortion by covariance distortion

I D1 at user 1, and D2 at user 2

encoder
mm SS 21 , nX

+

+

decoder

decoder

mS 1,1
ˆ

mS 1,2
ˆ

nZ2

nZ1

mS 2,1
ˆ

mS 2,2
ˆ

Separation scheme approximately optimal: genie link ≤ 2 bits
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From Gaussian source to general sources

Gaussian General
Symmetric MD (IT-09) Yes Yes
Asymmetric MD (IT-10) Yes No

Source broadcast (IT-11) Yes No
Approx. separation (Arxiv) Yes Yes

Approximation optimality of S-C separation with general sources
I Sources under difference distortion measure f (s − ŝ)

Approximation results can all be extended to “general” sources.
More general the model, looser the bound on the gap.
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Forward coding schemes

Separation other
Symmetric MD (IT-09) MLD+SR PPR scheme
Asymmetric MD (IT-10) AMLD+SR

Source broadcast (IT-11) Broadcast+SR
Approx. separation (Arxiv) Broadcast+SR

Bound on the gap may be reduced with improved coding schemes.
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Outer bounding proof techniques

1st: introduction of additional auxiliary random variables
2nd: the super channel abstraction

1st 2nd
Symmetric MD (IT-09) Yes No
Asymmetric MD (IT-10) Yes No

Gaussian source/channel (IT-11) Yes No
Gaussian source on general channel (IT-11) Yes Yes

Approx. separation (Arxiv) Yes Yes
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Type of approximations

Rate type: rate-region between parallel hyperplanes
Multiplicative type: multiplicative bound on distortion regions

Symmetric MD (IT-09) Rate
Asymmetric MD (IT-10) Rate

Gaussian source/channel (IT-11) Multiplicative
Gaussian source on general channel (IT-11) Multiplicative

Approx. separation (ISIT-10) Rate

*Some cases the two types of approximations can be exchanged.
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Type of approximations

a. c.: approximate characterization
Approximate optimal architecture
Characterization of the R-D (or distortion) region

a. o.: approximate optimality
Approximate optimal architecture

Symmetric MD (IT-09) a. c.
Asymmetric MD k = 3 (IT-10) a. c.

Asymmetric MD k > 3 a. o.
Gaussian source/channel (IT-11) a. c.

Gaussian source on general channel (IT-11) a. o.
Approx. separation (ISIT-10) a. o.
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The super channel conversion

Encoder DecoderChannelmS mŜ
nX nY

⇓Encoder DecoderChannelmS mŜ
nX nYSuper-channel

Rate supported on the super channel ≥ I(Sm; Ŝm) ≥ mR(D)

Use this rate to encode source S? A separation-based scheme!
Separation is optimal in point-to-point scenario (Shannon’s)
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Independent Sources on Interference Channel
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Source-channel separation is optimal
Source and channel can have bandwidth mismatch.
Channel feedbacks does not change the optimality.
Result holds for lossless coding scenario.
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Generalization to networks

1S

communication network2S

3S

1Ŝ

2Ŝ

3Ŝ

Network with independent sources, each source only has one sink
A super interference channel.
Source-channel separation is optimal!
Interference by other inputs? Part of the super-channel code.
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A dual result: the super source conversion
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View the channel output X n as a super-source;
Can encoder it using digital code because I(X n;Y n) ≤ nC;
A separation-based scheme!
Separation is optimal in point-to-point scenario (Shannon’s)
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Dependent sources on orthogonal channels
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Source-channel separation is optimal
Source and channel can have bandwidth mismatch.
Result holds for lossless coding scenario.

Generalization of the optimality to networks
Network with orthogonal (line) channels;
The extracted source coding problem needs interactive coding.
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Concluding remarks

Multiple descriptions→ Gaussian source broadcast→ approximate
optimality of S-C separation in network

Multiple descriptions: source broadcast on deterministic channel
Network source broadcast: source broadcast on abstract channels

Approximate characterization vs. approximate optimality
Even if a. c. is not available, a. o. gives architecture insight
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Some open problems

P1: Gaussian source coding on general broadcast channels
Common messages and private messages.
May help the approximation?
The lossless problem: 3 receivers and 7 descriptions (each
received by a receiver subset)

P2: The missing approximate optimality result?
Separation is optimal for

I Unicast of independent sources on a general channel network;
I Dependent sources on an orthogonal channel network.

Separation is approximately optimal for
I Multicast of independent sources on a general channel network;
I Dependent sources on a “partially orthogonal” channel network?
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