Multiple Descriptions, Gaussian Source Broadcast and Source-Channel Separation

Chao Tian

AT&T Labs-Research, Florham Park, NJ

Oct. 2012

Based on joint work with Jun Chen, Suhas Diggavi, Soheil Mohajer and Shlomo Shamai

🨂 at&t

1/45

A (10) × (10) × (10)

Oct. 2012

- Lossless compression program: e.g. winzip, gzip, winrar, etc.
- Some signals are too costly to compress losslessly:
 - Audio: e.g. MP3
 - Images: e.g. JPEG, SPIHT and JPEG 2000
 - Video: e.g. MPEG2 (DVD), MPEG4 and h.264

Original image (929kB)

- Lossless compression program: e.g. winzip, gzip, winrar, etc.
- Some signals are too costly to compress losslessly:
 - Audio: e.g. MP3
 - Images: e.g. JPEG, SPIHT and JPEG 2000
 - Video: e.g. MPEG2 (DVD), MPEG4 and h.264

Lossless compressed image (226kB)

- Lossless compression program: e.g. winzip, gzip, winrar, etc.
- Some signals are too costly to compress losslessly:
 - Audio: e.g. MP3
 - Images: e.g. JPEG, SPIHT and JPEG 2000
 - Video: e.g. MPEG2 (DVD), MPEG4 and h.264

Lossy image (20.3kB)

- Lossless compression program: e.g. winzip, gzip, winrar, etc.
- Some signals are too costly to compress losslessly:
 - Audio: e.g. MP3
 - Images: e.g. JPEG, SPIHT and JPEG 2000
 - Video: e.g. MPEG2 (DVD), MPEG4 and h.264

Lossier image (13.2kB)

Shannon's lossy source coding problem (1948): the best we can do?

- Compress an i.i.d. source X with (long) block codes
- Distortion: measure the quality of the reconstruction

Rate-distortion function $R(D) = \min_{\mathbb{E}d(X,Y) \leq D} I(X; Y)$.

- Intuition on how to design optimal codes
- Benefit of knowing the best performance to expect

3/45

Oct. 2012

Lossy source coding with multiple users

How about for more than point-to-point case?

- Point-to-point case: rate and distortion
- General case: rate tuple and distortion tuple
 - Source coding: rate-distortion region
 - Joint source-channel coding: achievable-distortion region

Characterizing these regions is very difficult

- Only known for a few special cases
 - Wyner-Ziv coding, successive refinement and two-way communication
- Difficult even with restricted scope: e.g. Gaussian source only

🥰 at&t

A (10) A (10) A (10)

Lossy source coding with multiple users

How about for more than point-to-point case?

- Point-to-point case: rate and distortion
- General case: rate tuple and distortion tuple
 - Source coding: rate-distortion region
 - Joint source-channel coding: achievable-distortion region

Characterizing these regions is very difficult

- Only known for a few special cases
 - Wyner-Ziv coding, successive refinement and two-way communication
- Difficult even with restricted scope: e.g. Gaussian source only

🨂 at&t

Can we find the solution approximately instead?

- Yes, "it's easier to approximate"
- Particularly suitable for Gaussian problems

Good approximation is almost as useful as exact solution

- Intuition on how to design close-to-optimal codes.
- Benefit of knowing the optimal performance within some precision.

Bonus: may lead to precise solution in some special cases.

Can we find the solution approximately instead?

- Yes, "it's easier to approximate"
- Particularly suitable for Gaussian problems

Good approximation is almost as useful as exact solution

- Intuition on how to design close-to-optimal codes.
- Benefit of knowing the optimal performance within some precision.

Bonus: may lead to precise solution in some special cases.

• • • • • • • • • • • •

What's in this talk?

A series of approximation results we recently presented

- Multiple descriptions
 - T., Mohajer, Diggavi, IT-09.
 - Mohajer, T., Diggavi, IT-10.
- Sending Gaussian source on broadcast channel
 - T., Diggavi, Shamai, IT-11.
- On the optimality of source-channel separation in networks
 - T., Chen, Diggavi, Shamai, Arxiv.

This talk:

- Summarize these results and discuss some related ones
- Connects some dots, and present several "new" results

ヘロト ヘ回ト ヘヨト ヘヨ

What's in this talk?

A series of approximation results we recently presented

- Multiple descriptions
 - T., Mohajer, Diggavi, IT-09.
 - Mohajer, T., Diggavi, IT-10.
- Sending Gaussian source on broadcast channel
 - T., Diggavi, Shamai, IT-11.
- On the optimality of source-channel separation in networks
 - T., Chen, Diggavi, Shamai, Arxiv.

This talk:

- Summarize these results and discuss some related ones
- Connects some dots, and present several "new" results

Outline

Multiple Descriptions

- 2 Gaussian Source Broadcast
- 3 Approximate Optimality of Source-Channel Separation
- 4 Connections, Comparisons and Specializations
- Optimality of Source-Channel Separation
- 6 Concluding Remarks and Open Problems

< 回 ト < 三 ト < 三

Outline

Multiple Descriptions

- 2 Gaussian Source Broadcast
- 3 Approximate Optimality of Source-Channel Separation

at&t

8/45

・ 何 ト ・ ヨ ト ・ ヨ ト

Oct. 2012

- 4 Connections, Comparisons and Specializations
- 5 Optimality of Source-Channel Separation
- 6 Concluding Remarks and Open Problems

Gaussian multiple descriptions: symmetric distortions

Lossy problem vs. lossless problem

"Approximating the Gaussian multiple description rate region under symmetric distortion constraints," IT-09

(AT&T,McMaster,UCLA,Berkeley,Technion)

Gaussian multiple descriptions: symmetric distortions

• Successive refinement: later pieces help refine earlier ones

What's the secret for MLD coding?

Unequal loss protection

Rate region approximation

- Inner bound: multilevel diversity coding + successive refinement
- Gap can be reduced by using better coding scheme
- Generalized to more than three descriptions and other sources at at at a source of the source of the

Multiple descriptions: asymm. distortions

Lossless problem: asymmetric multilevel diversity coding

"Asymmetric multilevel diversity coding and asymmetric multiple descriptions," IT-10 🔍 👝 💘 🗇 🦻 🐳

(AT&T,McMaster,UCLA,Berkeley,Technion)

Rate region: asymm. multiple descriptions

- Asymm. multilevel diversity coding + successive refinement
- Note: asymm. MLD rate region is still open for > 3.

Outline

Multiple Descriptions

- 2 Gaussian Source Broadcast
- 3 Approximate Optimality of Source-Channel Separation
- 4 Connections, Comparisons and Specializations
- 5 Optimality of Source-Channel Separation
- 6 Concluding Remarks and Open Problems

・ 同 ト ・ ヨ ト ・ ヨ ト

Gaussian source on Gaussian BC-channel

- Inner bound: separation-based scheme
 - Channel coding: degraded broadcast channel code
 - Source coding: successive refinement

"Approximate characterizations for the Gaussian source broadcast distortion region," IT-11.

Gaussian source on Gaussian BC-channel

• If the optimal scheme can achieve $(D_1, D_2, ..., D_K)$:

The separation scheme can achieve at least (KD₁, KD₂, ..., KD_{KB} at at at a state at a separation scheme can achieve at least (KD₁, KD₂, ..., KD_{KB} at a state at a

Gaussian source on General BC-channel

- Inner bound: separation-based scheme
 - Channel coding: broadcast with degraded message sets
- Same multiplicative gaps between inner and outer bounds

"Approximate characterizations for the Gaussian source broadcast distortion region," IT-11.

(AT&T,McMaster,UCLA,Berkeley,Technion)

Gaussian source on General BC-channel

- Inner bound: separation-based scheme
 - Channel coding: broadcast with degraded message sets
- Same multiplicative gaps between inner and outer bounds

"Approximate characterizations for the Gaussian source broadcast distortion region," IT-11.

(AT&T,McMaster,UCLA,Berkeley,Technion)

Outline

Multiple Descriptions

2 Gaussian Source Broadcast

3 Approximate Optimality of Source-Channel Separation

at&t

18/45

< 回 > < 三 > < 三 >

Oct. 2012

- 4 Connections, Comparisons and Specializations
- 5 Optimality of Source-Channel Separation
- 6 Concluding Remarks and Open Problems

A network setting

Mutually independent sources and general multiuser channels

- A single source can be present at multiple nodes
- Each source is wanted at multiple sinks
- Restrictions on the distortion measure
 - Difference distortion measure for each single source: $f(s \hat{s})$

"Optimality and approximate optimality of source-channel separation in networks," Arxiv.

Approximate separation in network setting

Source-channel separation is approximately optimal:

- Genie-provided links between source and destinations in a separation scheme:
 - As good as the optimal joint coding scheme

The capacities of these genie links need not be too large

Outline

Multiple Descriptions

- 2 Gaussian Source Broadcast
- 3 Approximate Optimality of Source-Channel Separation

at&t

21/45

・ 同 ト ・ ヨ ト ・ ヨ ト

Oct. 2012

- 4 Connections, Comparisons and Specializations
- 5 Optimality of Source-Channel Separation
- 6 Concluding Remarks and Open Problems

A hidden theme: Gaussian source broadcast

Gaussian sources on general broadcast channel: a general setting

- No restriction on the broadcast channels.
- Broadcast "channel" capacity may be unknown.
- Result: source-channel separation is approximately optimal.

Gaussian MD and Gaussian source broadcast

- Multiple descriptions: a deterministic broadcast channel
- Broadcast capacity = MLD rate region

23/45

Oct. 2012

Gaussian source broadcast and network broadcast

- Network broadcast: an abstract broadcast channel
 - May have feedback and other multiuser channels in the network
- Interferences by multiple sources? Part of the channel code.

How did we get this general result?

- If certain distortions $D_1, D_2, ..., D_K$ is achievable
 - Fixing the enc/dec functions: induce a super channel

$$S^m \rightarrow (\hat{S}_1^m, \hat{S}_2^m, ..., \hat{S}_K^m)$$

- This channel has some quality guarantees
- Send the source S on this super-channel

More on the channel quality guarantee

Lemma (Channel qualities from distortions)

- W: a random variable s.t. $\mathbb{E}d(S^m, g(W)) \leq D$.
- U = S + V and U' = S + V + V': V and V' indep. Gaussian random variables, with variance τ and τ' τ.

Mutual information bound

$$I(W; U'^m) \geq rac{m}{2}\lograc{1+ au'}{D+ au'},$$

Bound on mutual information difference

$$I(W; U^m) - I(W; U'^m) \geq rac{m}{2} \log rac{(1+ au)(D+ au')}{(1+ au')(D+ au')}$$

< <p>A < </p>

Note: U and U' are r.v. additionally introduced.

More on the channel quality guarantee

On super-BC $S^m \to (\hat{S}_1^m, \hat{S}_2^m, ..., \hat{S}_K^m)$: each \hat{S}_k^m is W. • User-k in the super broadcast channel has rate

$$\frac{1}{2}\log\frac{(1+\tau_k)\prod_{j=2}^k(D_j+\tau_{j-1})}{\prod_{j=1}^k(D_j+\tau_j)}$$

• Using Gaussian R-D function $D = \exp(-2R)$

Separation scheme achieves some distortions (w/ parameters {

First new case: revisiting asymm. Gaussian MD

- Asymm. MLD lossless problem difficult for K > 3
- Open: the asymm. MD approximation problem for K > 3?

Question: is AMLD+successive refinement still approximately optimal?

First new case: revisiting asymm. Gaussian MD

Answer: yes! asymm. MLD is a deterministic broadcast channel

- If AMLD is solved (K = 3): approximate characterization
- If AMLD is open (K > 3): approximate optimality

Second new case: a less obvious problem

Broadcast correlated Gaussian sources on Gaussian channel

- Each user is interested in one source component
- Source bandwidth and channel bandwidth can be mismatched
- For bandwidth matched case, hybrid scheme is optimal (T., Diggavi, Shamai IT-11)

Two sources are now dependent: can we still apply the result at at at at a stat

Second new case: a less obvious problem

An almost equivalent problem:

- Each user is interested in all components
- Replace the MSE distortion by covariance distortion
 - D_1 at user 1, and D_2 at user 2

• Separation scheme approximately optimal: genie link \leq 2 bits

From Gaussian source to general sources

	Gaussian	General
Symmetric MD (IT-09)	Yes	Yes
Asymmetric MD (IT-10)	Yes	No
Source broadcast (IT-11)	Yes	No
Approx. separation (Arxiv)	Yes	Yes

- Approximation optimality of S-C separation with general sources
 - Sources under difference distortion measure $f(s \hat{s})$
- Approximation results can all be extended to "general" sources.
- More general the model, looser the bound on the gap.

32/45

Oct. 2012

	Separation	other
Symmetric MD (IT-09)	MLD+SR	PPR scheme
Asymmetric MD (IT-10)	AMLD+SR	
Source broadcast (IT-11)	Broadcast+SR	
Approx. separation (Arxiv)	Broadcast+SR	

Bound on the gap may be reduced with improved coding schemes.

33/45

Oct. 2012

Outer bounding proof techniques

- 1st: introduction of additional auxiliary random variables
- 2nd: the super channel abstraction

	1st	2nd
Symmetric MD (IT-09)	Yes	No
Asymmetric MD (IT-10)	Yes	No
Gaussian source/channel (IT-11)	Yes	No
Gaussian source on general channel (IT-11)	Yes	Yes
Approx. separation (Arxiv)	Yes	Yes

Type of approximations

- Rate type: rate-region between parallel hyperplanes
- Multiplicative type: multiplicative bound on distortion regions

Symmetric MD (IT-09)	Rate
Asymmetric MD (IT-10)	Rate
Gaussian source/channel (IT-11)	Multiplicative
Gaussian source on general channel (IT-11)	Multiplicative
Approx. separation (ISIT-10)	Rate

*Some cases the two types of approximations can be exchanged.

Type of approximations

- a. c.: approximate characterization
 - Approximate optimal architecture
 - Characterization of the R-D (or distortion) region
- a. o.: approximate optimality
 - Approximate optimal architecture

Symmetric MD (IT-09)	
Asymmetric MD $k = 3$ (IT-10)	
Asymmetric MD $k > 3$	
Gaussian source/channel (IT-11)	
Gaussian source on general channel (IT-11)	
Approx. separation (ISIT-10)	

Outline

Multiple Descriptions

- 2 Gaussian Source Broadcast
- 3 Approximate Optimality of Source-Channel Separation

at&t

37/45

< 回 > < 三 > < 三 >

Oct. 2012

- 4 Connections, Comparisons and Specializations
- 5 Optimality of Source-Channel Separation
- Concluding Remarks and Open Problems

The super channel conversion

- Rate supported on the super channel $\geq I(S^m; \hat{S}^m) \geq mR(D)$
- Use this rate to encode source S? A separation-based scheme!
- Separation is optimal in point-to-point scenario (Shannon's)

38/45

Oct. 2012

Independent Sources on Interference Channel

Source-channel separation is optimal

- Source and channel can have bandwidth mismatch.
- Channel feedbacks does not change the optimality.
- Result holds for lossless coding scenario.

Generalization to networks

Network with independent sources, each source only has one sink

- A super interference channel.
- Source-channel separation is optimal!
- Interference by other inputs? Part of the super-channel code.

A dual result: the super source conversion

- View the channel output Xⁿ as a super-source;
- Can encoder it using digital code because $I(X^n; Y^n) \le nC$;
- A separation-based scheme!
- Separation is optimal in point-to-point scenario (Shannon's)

🥰 at&t

Dependent sources on orthogonal channels

Source-channel separation is optimal

- Source and channel can have bandwidth mismatch.
- Result holds for lossless coding scenario.

Generalization of the optimality to networks

- Network with orthogonal (line) channels;
- The extracted source coding problem needs interactive coding atst

Outline

Multiple Descriptions

- 2 Gaussian Source Broadcast
- 3 Approximate Optimality of Source-Channel Separation
- 4 Connections, Comparisons and Specializations
- Optimality of Source-Channel Separation
- 6 Concluding Remarks and Open Problems

at&t

43/45

Multiple descriptions \rightarrow Gaussian source broadcast \rightarrow approximate optimality of S-C separation in network

- Multiple descriptions: source broadcast on deterministic channel
- Network source broadcast: source broadcast on abstract channels

Approximate characterization vs. approximate optimality

• Even if a. c. is not available, a. o. gives architecture insight

Multiple descriptions \rightarrow Gaussian source broadcast \rightarrow approximate optimality of S-C separation in network

- Multiple descriptions: source broadcast on deterministic channel
- Network source broadcast: source broadcast on abstract channels

Approximate characterization vs. approximate optimality

• Even if a. c. is not available, a. o. gives architecture insight

44/45

Oct 2012

Some open problems

- P1: Gaussian source coding on general broadcast channels
 - Common messages and private messages.
 - May help the approximation?
 - The lossless problem: 3 receivers and 7 descriptions (each received by a receiver subset)
- P2: The missing approximate optimality result?
 - Separation is optimal for
 - Unicast of independent sources on a general channel network;
 - Dependent sources on an orthogonal channel network.
 - Separation is approximately optimal for
 - Multicast of independent sources on a general channel network;
 - Dependent sources on a "partially orthogonal" channel network?

ᆯ at&t

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト